我们调查了布尔功能多任务函数多任务的计算效率,这些函数在$ d $二维的超立方体上通过大小$ k \ ll d $在所有任务中共享的功能表示相关。我们提供了一个多项式时间多任务学习算法,用于带有保证金$ \ gamma $的概念类别的概念类别,该算法基于同时增强技术,仅需要$ \ textrm {poly}(k/\ gamma)和$ \ textrm {poly}(k \ log(d)/\ gamma)$样本总共。此外,我们证明了一个计算分离,表明假设存在一个无法在属性效率模型中学习的概念类,我们可以构建另一个可以在属性效率模型中学到的概念类,但不能是多任务。有效学习的 - 多任务学习此概念类要么需要超级顺序的时间复杂性,要么需要更大的样本总数。
translated by 谷歌翻译
属性推理攻击使对手可以从机器学习模型中提取培训数据集的全局属性。此类攻击对共享数据集来培训机器学习模型的数据所有者具有隐私影响。已经提出了几种针对深神经网络的财产推理攻击的现有方法,但它们都依靠攻击者训练大量的影子模型,这会导致大型计算开销。在本文中,我们考虑了攻击者可以毒化训练数据集的子集并查询训练有素的目标模型的属性推理攻击的设置。通过我们对中毒下模型信心的理论分析的激励,我们设计了有效的财产推理攻击,SNAP,该攻击获得了更高的攻击成功,并且需要比Mahloujifar Et的基于最先进的中毒的财产推理攻击更高的中毒量。 al。例如,在人口普查数据集上,SNAP的成功率比Mahloujifar等人高34%。同时更快56.5倍。我们还扩展了攻击,以确定在培训中是否根本存在某个财产,并有效地估算了利息财产的确切比例。我们评估了对四个数据集各种比例的多种属性的攻击,并证明了Snap的一般性和有效性。
translated by 谷歌翻译
我们给出了第一个多项式 - 时间,多项式 - 样本,差异私人估算器,用于任意高斯分发$ \ mathcal {n}(\ mu,\ sigma)$ in $ \ mathbb {r} ^ d $。所有以前的估算器都是非变性的,具有无限的运行时间,或者要求用户在参数$ \ mu $和$ \ sigma $上指定先验的绑定。我们算法中的主要新技术工具是一个新的差别私有预处理器,它从任意高斯$ \ mathcal {n}(0,\ sigma)$中采用样本,并返回矩阵$ a $,使得$ a \ sigma a ^ t$具有恒定的条件号。
translated by 谷歌翻译
Accurate determination of a small molecule candidate (ligand) binding pose in its target protein pocket is important for computer-aided drug discovery. Typical rigid-body docking methods ignore the pocket flexibility of protein, while the more accurate pose generation using molecular dynamics is hindered by slow protein dynamics. We develop a tiered tensor transform (3T) algorithm to rapidly generate diverse protein-ligand complex conformations for both pose and affinity estimation in drug screening, requiring neither machine learning training nor lengthy dynamics computation, while maintaining both coarse-grain-like coordinated protein dynamics and atomistic-level details of the complex pocket. The 3T conformation structures we generate are closer to experimental co-crystal structures than those generated by docking software, and more importantly achieve significantly higher accuracy in active ligand classification than traditional ensemble docking using hundreds of experimental protein conformations. 3T structure transformation is decoupled from the system physics, making future usage in other computational scientific domains possible.
translated by 谷歌翻译
Adversarial imitation learning (AIL) has become a popular alternative to supervised imitation learning that reduces the distribution shift suffered by the latter. However, AIL requires effective exploration during an online reinforcement learning phase. In this work, we show that the standard, naive approach to exploration can manifest as a suboptimal local maximum if a policy learned with AIL sufficiently matches the expert distribution without fully learning the desired task. This can be particularly catastrophic for manipulation tasks, where the difference between an expert and a non-expert state-action pair is often subtle. We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of multiple exploratory, auxiliary tasks in addition to a main task. The addition of these auxiliary tasks forces the agent to explore states and actions that standard AIL may learn to ignore. Additionally, this particular formulation allows for the reusability of expert data between main tasks. Our experimental results in a challenging multitask robotic manipulation domain indicate that LfGP significantly outperforms both AIL and behaviour cloning, while also being more expert sample efficient than these baselines. To explain this performance gap, we provide further analysis of a toy problem that highlights the coupling between a local maximum and poor exploration, and also visualize the differences between the learned models from AIL and LfGP.
translated by 谷歌翻译
Many problems in machine learning involve bilevel optimization (BLO), including hyperparameter optimization, meta-learning, and dataset distillation. Bilevel problems consist of two nested sub-problems, called the outer and inner problems, respectively. In practice, often at least one of these sub-problems is overparameterized. In this case, there are many ways to choose among optima that achieve equivalent objective values. Inspired by recent studies of the implicit bias induced by optimization algorithms in single-level optimization, we investigate the implicit bias of gradient-based algorithms for bilevel optimization. We delineate two standard BLO methods -- cold-start and warm-start -- and show that the converged solution or long-run behavior depends to a large degree on these and other algorithmic choices, such as the hypergradient approximation. We also show that the inner solutions obtained by warm-start BLO can encode a surprising amount of information about the outer objective, even when the outer parameters are low-dimensional. We believe that implicit bias deserves as central a role in the study of bilevel optimization as it has attained in the study of single-level neural net optimization.
translated by 谷歌翻译
The Covid-19 pandemic induced a vast increase in adolescents diagnosed with eating disorders and hospitalized due to eating disorders. This immense growth stemmed partially from the stress of the pandemic but also from increased exposure to content that promotes eating disorders via social media, which, within the last decade, has become plagued by pro-eating disorder content. This study aimed to create a deep learning model capable of determining whether a given social media post promotes eating disorders based solely on image data. Tweets from hashtags that have been documented to promote eating disorders along with tweets from unrelated hashtags were collected. After prepossessing, these images were labeled as either pro-eating disorder or not based on which Twitter hashtag they were scraped from. Several deep-learning models were trained on the scraped dataset and were evaluated based on their accuracy, F1 score, precision, and recall. Ultimately, the vision transformer model was determined to be the most accurate, attaining an F1 score of 0.877 and an accuracy of 86.7% on the test set. The model, which was applied to unlabeled Twitter image data scraped from "#selfie", uncovered seasonal fluctuations in the relative abundance of pro-eating disorder content, which reached its peak in the summertime. These fluctuations correspond not only to the seasons, but also to stressors, such as the Covid-19 pandemic. Moreover, the Twitter image data indicated that the relative amount of pro-eating disorder content has been steadily rising over the last five years and is likely to continue increasing in the future.
translated by 谷歌翻译
We introduce a pivot for exact selective inference with randomization. Not only does our pivot lead to exact inference in Gaussian regression models, but it is also available in closed form. We reduce the problem of exact selective inference to a bivariate truncated Gaussian distribution. By doing so, we give up some power that is achieved with approximate inference in Panigrahi and Taylor (2022). Yet we always produce narrower confidence intervals than a closely related data-splitting procedure. For popular instances of Gaussian regression, this price -- in terms of power -- in exchange for exact selective inference is demonstrated in simulated experiments and in an HIV drug resistance analysis.
translated by 谷歌翻译
Using geometric landmarks like lines and planes can increase navigation accuracy and decrease map storage requirements compared to commonly-used LiDAR point cloud maps. However, landmark-based registration for applications like loop closure detection is challenging because a reliable initial guess is not available. Global landmark matching has been investigated in the literature, but these methods typically use ad hoc representations of 3D line and plane landmarks that are not invariant to large viewpoint changes, resulting in incorrect matches and high registration error. To address this issue, we adopt the affine Grassmannian manifold to represent 3D lines and planes and prove that the distance between two landmarks is invariant to rotation and translation if a shift operation is performed before applying the Grassmannian metric. This invariance property enables the use of our graph-based data association framework for identifying landmark matches that can subsequently be used for registration in the least-squares sense. Evaluated on a challenging landmark matching and registration task using publicly-available LiDAR datasets, our approach yields a 1.7x and 3.5x improvement in successful registrations compared to methods that use viewpoint-dependent centroid and "closest point" representations, respectively.
translated by 谷歌翻译
Linear partial differential equations (PDEs) are an important, widely applied class of mechanistic models, describing physical processes such as heat transfer, electromagnetism, and wave propagation. In practice, specialized numerical methods based on discretization are used to solve PDEs. They generally use an estimate of the unknown model parameters and, if available, physical measurements for initialization. Such solvers are often embedded into larger scientific models or analyses with a downstream application such that error quantification plays a key role. However, by entirely ignoring parameter and measurement uncertainty, classical PDE solvers may fail to produce consistent estimates of their inherent approximation error. In this work, we approach this problem in a principled fashion by interpreting solving linear PDEs as physics-informed Gaussian process (GP) regression. Our framework is based on a key generalization of a widely-applied theorem for conditioning GPs on a finite number of direct observations to observations made via an arbitrary bounded linear operator. Crucially, this probabilistic viewpoint allows to (1) quantify the inherent discretization error; (2) propagate uncertainty about the model parameters to the solution; and (3) condition on noisy measurements. Demonstrating the strength of this formulation, we prove that it strictly generalizes methods of weighted residuals, a central class of PDE solvers including collocation, finite volume, pseudospectral, and (generalized) Galerkin methods such as finite element and spectral methods. This class can thus be directly equipped with a structured error estimate and the capability to incorporate uncertain model parameters and observations. In summary, our results enable the seamless integration of mechanistic models as modular building blocks into probabilistic models.
translated by 谷歌翻译